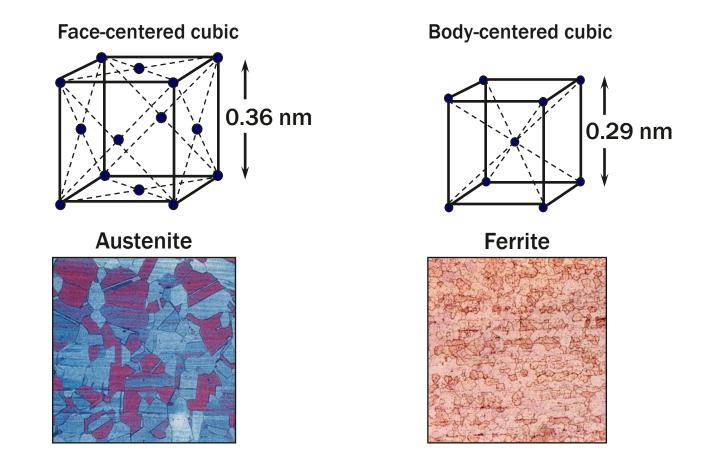
Modern stainless steel solutions for road and rail Metalforum Poznan

Dr.Thomas Fröhlich and Wolfgang Gebel Stainless EMEA Outokumpu

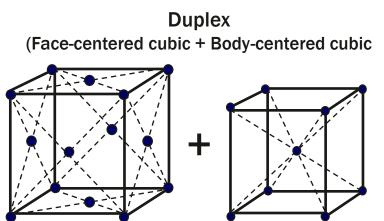
June 4th, 2014


Contents

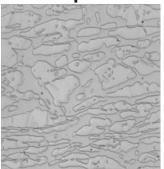
- 1. Basic information
- 2. Introduction
- 3. Formability and Corrosion resistance
- 4. Type of Vehicles for public transportation
- 5. Arguments for Stainless Steels
- 6. New Austenitic CrMn- steels with high mechanical strength

The stainless steel families

Lattice types and microstructures

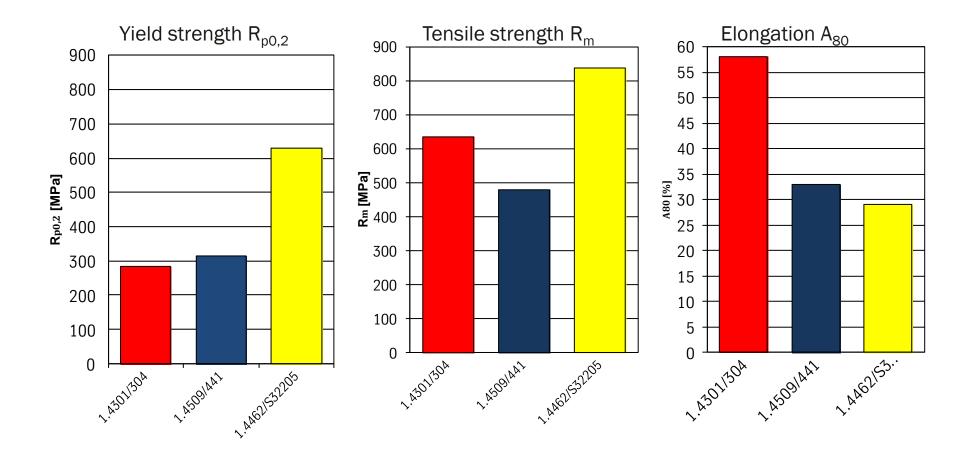


Alloying elements and heat treatment determine the crystal structure.



The stainless steel families

Lattice types and microstructures


Duplex

Different lattice types lead to different material properties.

Mechanical properties, 2B finish

5

Contents

- 1. Basic information
- 2. Introduction
- 3. Formability and Corrosion resistance
- 4. Type of Vehicles for public transportation
- 5. Arguments for Stainless Steels
- 6. New Austenitic CrMn- steels with high mechanical strength

What materials are usually used for the construction of rail cars?

reinforced plastics

aluminium alloys

carbon steels and low-alloy steels

stainless steels

7

Contents

- 1. Basic information
- 2. Introduction
- 3. Formability and Corrosion resistance
- 4. Type of Vehicles for public transportation
- 5. Arguments for Stainless Steels
- 6. New Austenitic CrMn- steels with high mechanical strength

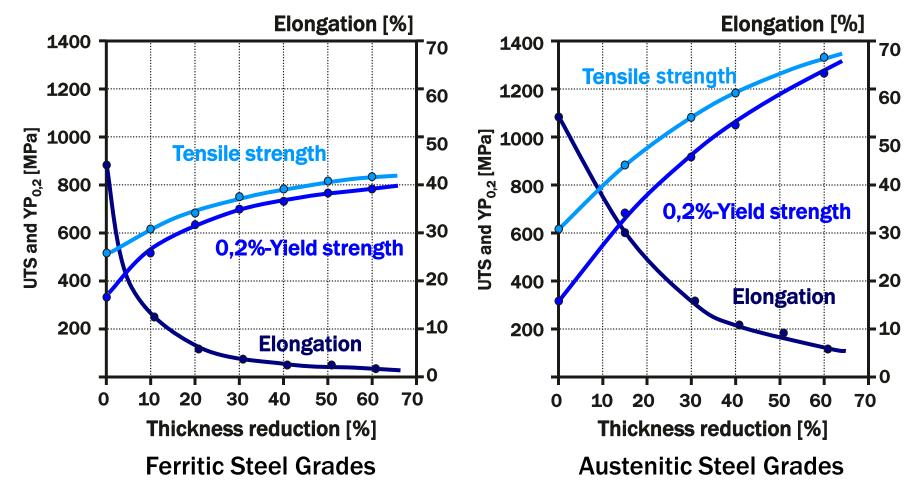
Ferritic and Duplex stainless steel grades for light weight constructions

Chemical compositions (typ.values) in mass-%

Steel grades EN 10088 ASTM A240 OTK name	С	N	Cr	Ni*	Мо	Mn	others	Rp _{0,2} [MPa] Min values according to EN 10088	Alloy surcharge May 2014 [€/t]
1.4003 S40977	0,02	0,02	11	0,5	< 0,1	< 1,5	-	> 320	387
1.4600 S40977 Ti	0,02	0,02	11	0,8	< 0,1	< 2,0	Ti	> 375	appr. 415
1.4589 S42035	0,04	0,01	14	1,6	0,25	< 1,0	ті	> 420	576
1.4162 S32101 LDX 2101	0,02	0,22	21,5	1,5	0,3	5,0	Cu	> 530	677
1.4362 S32304 2205	0,02	0,10	23	4,8	0,3	< 1,5	Cu	> 450	915

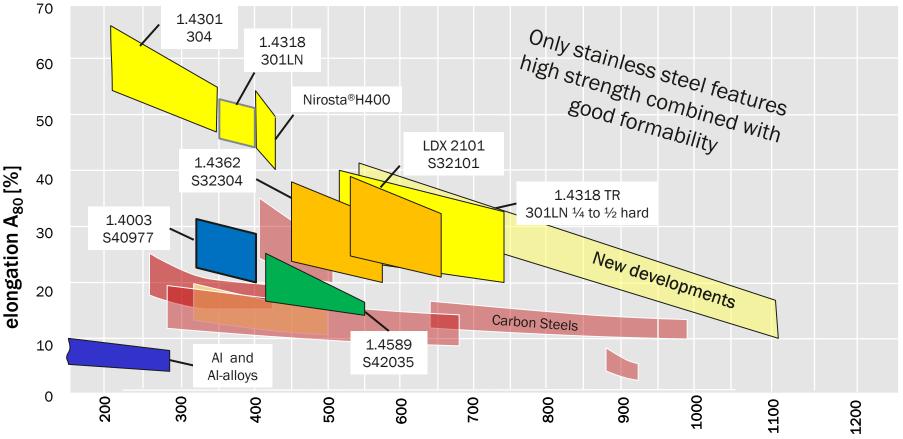
*Reducing of Nickel results in cost savings.

Austenitic stainless steel grades for light weight constructions

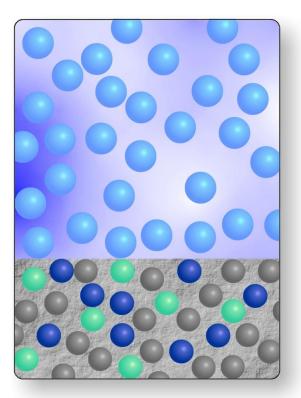

Chemical compositions (typ.values) in mass-%

Steel grades EN 10088 ASTM A240 internal	С	N	Cr	Ni*	Мо	Mn	others	Rp _{0,2} [MPa] Min values according to EN 10088	Alloy surcharge May 2014 [€/t]
1.4301 304	0,04	0,04	18,1	8,0	< 0,5	-	Cu: <0,4	> 230	1186
1.4318 301 LN	0,02	0,14	17,7	6,5	< 0,5	< 2,0	-	> 350	1012
1.4376 / H400	0,04	0,2	17,4	4,1	< 0,5	6,8	-	> 400	1030

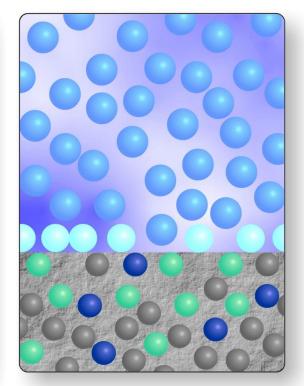
*Reducing of Nickel results in cost savings.



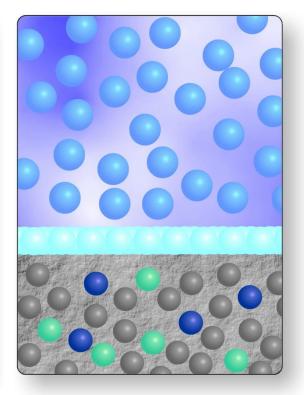
Stainless steel grades Work hardening effect


Properties of stainless steel grades for railway vehicles in comparison to carbon steels and Aluminum

Yield strength R_{P0,2} [MPa]



Why stainless steel does not show red rust? Self-passivation effect



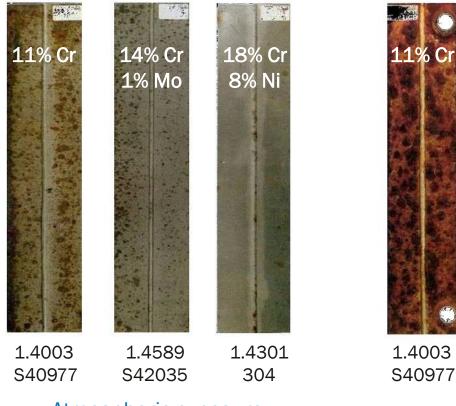
Initial state: Fe with embedded Cr atoms

Chromium reacts with oxygen from the air, the passive layer is formed (self-passivation)

Compact passive layer of chromium oxide

Spectrum of Stainless Steels for transportation systems

Ferritic 1.4362 Austenitic S32304 Duplex LDX 2101 S32101 1.4301 304 1.4318 1.4318 TR 1.4318 TR Nirosta[®]H400 301LN 301LN 1/2 hard 301LN 1/4 hard 1.4589 S42035 H500 H800 H1000 1.4003 S40977 1.4600 S40977Ti


Mechanical properties (Yield strength)

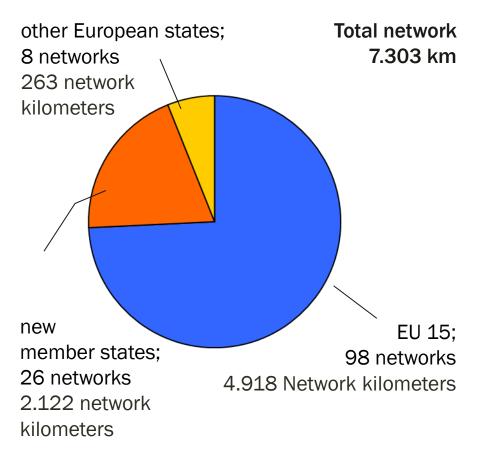
PRE-Index, Duplex PREN-Index)

Corrosion resistance

Corrosion attack of different steel grades after one year exposure

Atmospheric exposure (Cuxhaven, sea side)

14% Cr


1% Mo

Contents

- 1. Basic information
- 2. Introduction
- 3. Formability and Corrosion resistance
- 4. Type of Vehicles for public transportation
- 5. Arguments for Stainless Steels
- 6. New Austenitic CrMn- steels with high mechanical strength

Light Rail Vehicles

Reference: Stadler Rail

<u>Reference:</u> Metro, light rail and tram systems in Europe, Errac UITP, 2009

Implemented projects in ferritic grades, Light Rail Vehicles

Bombardier, Flexity, new Light Rail Vehicle of Krefeld city, 2010 Ferritic steel stainless grade: 1.4003 / S40977, painted

Reference: Stadtwerke Krefeld AG

Implemented projects in ferritic grades, Light Rail Vehicles

Stadler, Tango, new Light Rail Vehicle of Basel city, 2008 Ferritic steel stainless grade: 1.4589 / S42035, painted

Reference: Stadler Rail und Badische Zeitung

Implemented projects in ferritic grades, Metros

Berliner S-Bahn, Bombardier (former LEW Hennigsdorf), ongoing since 1990 Ferritic steel stainless grade: 1.4589 / S42035, painted

Reference: Wikimedia Commons, Creative Commons

Implemented projects in austenitic grades,

Metros

Strong growing in Asia demands stainless steel for Metro vehicles

Metro Delhi, Bombardier, 2010 Austenitic steel stainless grade: 1.4318 / 301LN; 1.4307 / 304L brushed

Reference:Bombardier Transportation

Implemented projects in austenitic grades, **Metros Roof connection** t = 2,0 mm Resistant spot welding Side frame with windows t = 2,0 mm 301-3 Resistant spot welding Side frame without windows t = 1,5 mm

Hamburger Hochbahn DT5, 2009 Austenitic stainless steel grade: 1.4318 / 301LN, side panel: 2G (grain 320 + brushed)

Reference: Hamburger Hochbahn

Commuter and Regional Trains, Double-deck Coaches, ferritic grades

Double-deck Coaches of German Railways, Bombardier, ongoing Ferritic steel grade: 1.4003 / S40977, painted

Reference: Wikimedia Commons, Creative Commons, RsVe

Commuter and Regional Trains, Multiple Units (MU), ferritic grades

Commuter and Regional Trains, Electric and Diesel Multiple Units, ongoing Ferritic steel grade: 1.4003 / S40977, painted

Reference: Wikimedia Commons, Creative Commons

1.4600 for ore/coal railway cars

Steel grade: 1.4600/1.4003 Ti (≈\$40977Ti)

Surface finish:1DGauge:3.00-8.00 mm

Customer: Sandvik (Australia)

End use: Railway cars (mining)

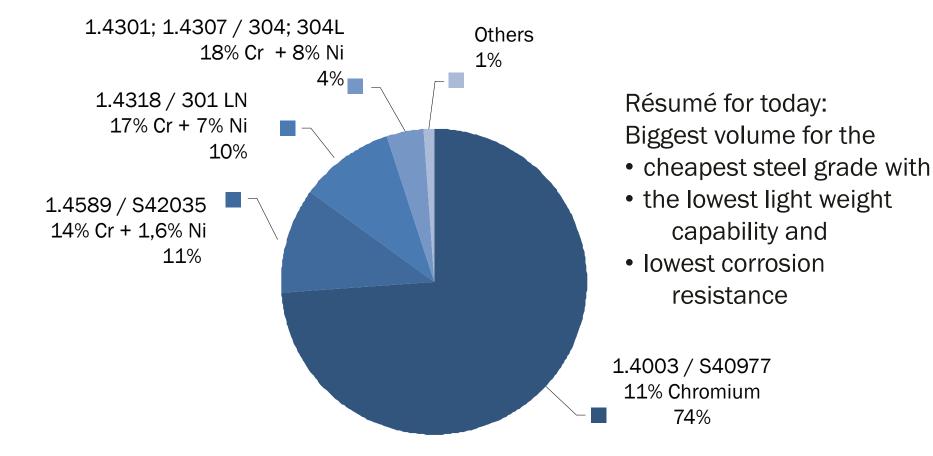
Demands: Corrosion resistant, weldable

Benefits: Cost-effective, weldable stainless steel

Australian ore / coal railway car Ferritic stainless steel grade: 1.4600 / S40977 Ti

Example of a city bus made of ferritic stainless steel 1.4003 / S40977

Reference: Solaris bus and coach


Selection criteria for materials

Why is stainless steel the ideal material for railway vehicles? Certainly because of it`s corrosion resistance, but additionally there is a wide range of different useful properties, which cannot be offered for low cost.

	stainless steels	Carbon steels	Aluminium alloys
 Design 	++	++	++
 Construction 	++	++	++
 Corrosion resistance 	++	-	0
 Weight, energy consumption wear, lifecycle 	on, ++	+	+
 Repairing feasibility 	+	+	-
 Experience 	0/+	+	-
 Mechanical loading cases 	++	+	
 Price 	0	++	0
 Lifecycle costs 	++	-	+

Actual distribution of steel grades for railway vehicles in Europe

Contents

- 1. Basic information
- 2. Introduction
- 3. Formability and Corrosion resistance
- 4. Type of Vehicles for public transportation
- 5. Arguments for Stainless Steels
- 6. New Austenitic CrMn- steels with high mechanical strength

Some arguments for stainless steels from the press releases of our customers

Light weight

- 10 % weight reduction results in 7 % energy saving for a metro system
- weight reduction results in a life time increase for wheel rims.

Corrosion

- Stainless steel bodies are more expensive but they are durable and have low maintenance costs.
- A life-time of over 30 years without harmful corrosion attacks
- Car bodies made of stainless steel are very sustainable.

Manufacturing

- Good weldability.
- Also in case of an accident vehicles are easy to repair.

Some arguments for stainless steels from the press releases of our customers

Low-floor vehicles

- A lot of aggregates have to displaced onto the roof.
- 30 % of the length consists of doors.

Both results in a very high pressure of the body, especially under oscillating loads. Therefore high strength stainless steels are the best choice for the construction.

Recyclability

Bodies of stainless steel vehicles are totally recyclable without any loss in quality of the steel grade. Every standard stainless steel grade is a recycled material.

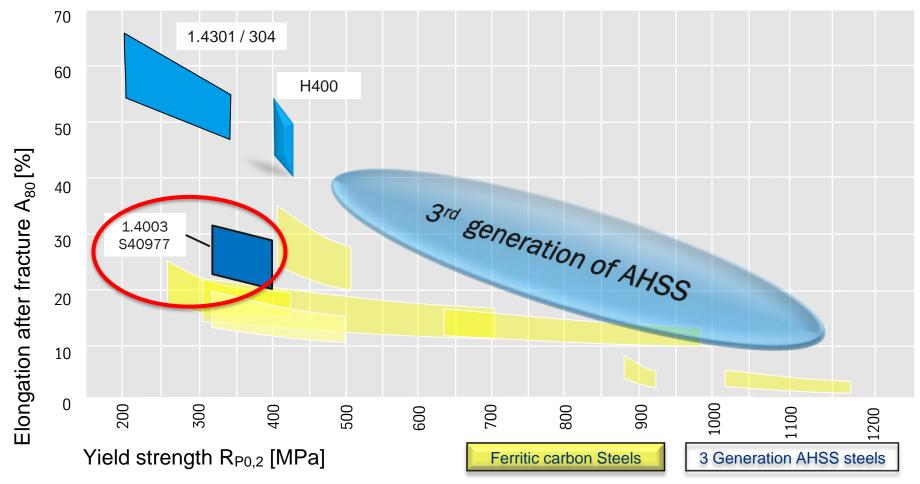
Contents

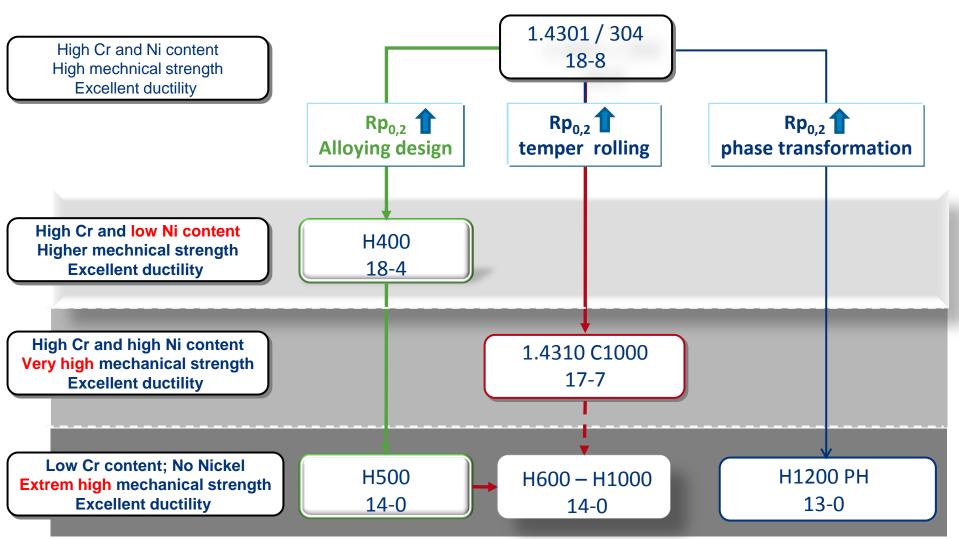
- 1. Basic information
- 2. Introduction
- 3. Formability and Corrosion resistance
- 4. Type of Vehicles for public transportation
- 5. Arguments for Stainless Steels
- 6. New Austenitic CrMn- steels with high mechanical strength

OEM 's have more than 15 years of experience with austenitic steels (H400)

Audi A8

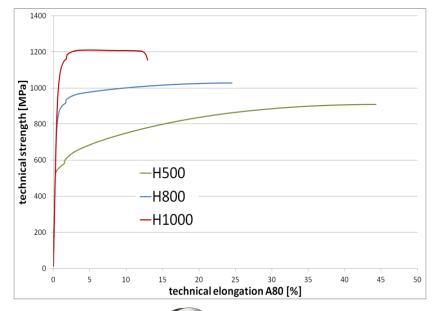
Lightweight solution by: high mechanical strength and high ductility properties.


- Advantage of the material: Excellent formability because of limited space.
- Lightweight potential: 20% weight saving by reduction of thickness
- Better fatigue behavior.
- Almost the same hardness in the weld seam and in the base material.



Demand of all car manufacturers: 3rd Generation AHSS (Advanced high strength steel)

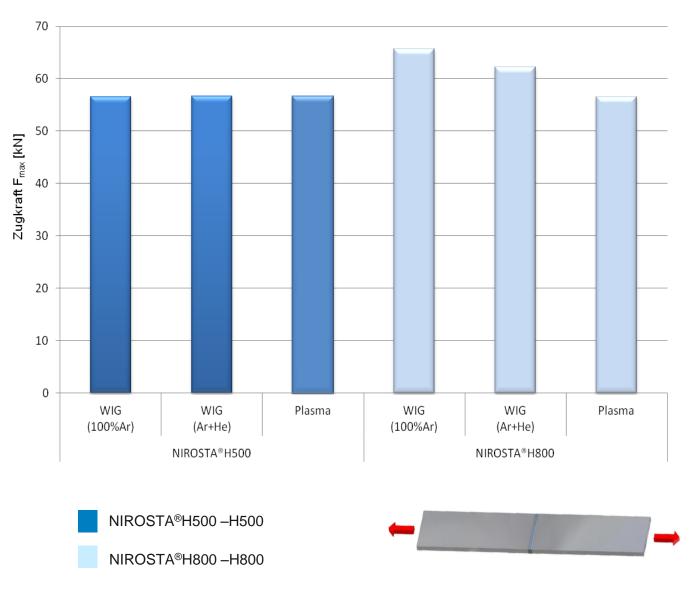
Cost effective light weight material



Our material design strategy – H500 and its temper-rolled variants H800 / H1000

- Ni-free Cr-Mn austenitic stainless steel
- Ni substituted by Mn, C and N

	С	Mn	Cr	Ni	Ν	Мо	PRE*
H500 (H800 / H1000)	0.31	16.0	14.20	0.45	0.30	0.03	19

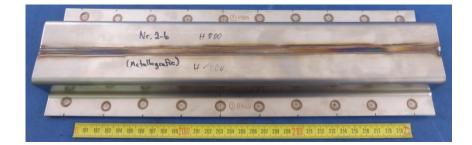

	R _{p0.2} [MPa]	R _m [MPa]	A ₈₀ [%]
H500	540	910	45
H800	780	1000	33
H1000	990	1200	16

*PRE = %Cr + 3.3 x %Mo + 16 x %N


TIG welding

Quasistatic tensile test

Material is now commercially available



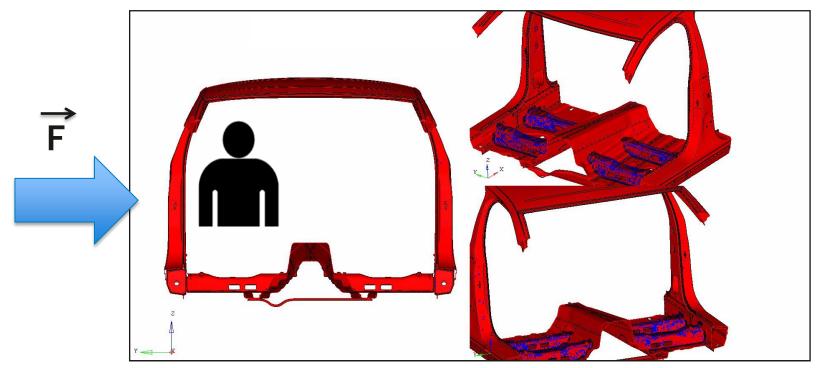
Vari-Form: H800 Hydro formed

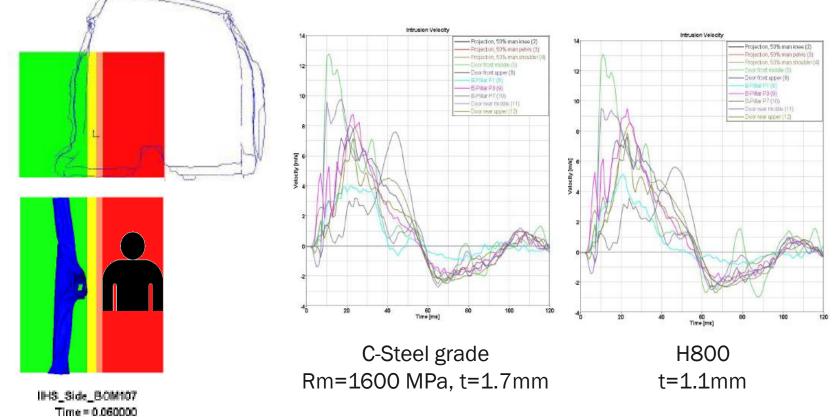
Crash behaviour

- dynamic three point bending test:
 Drop height h = 2,50m
 Drop mass m = 57,90kg
 - \bigcirc Speed v₀ = 24,50km/h

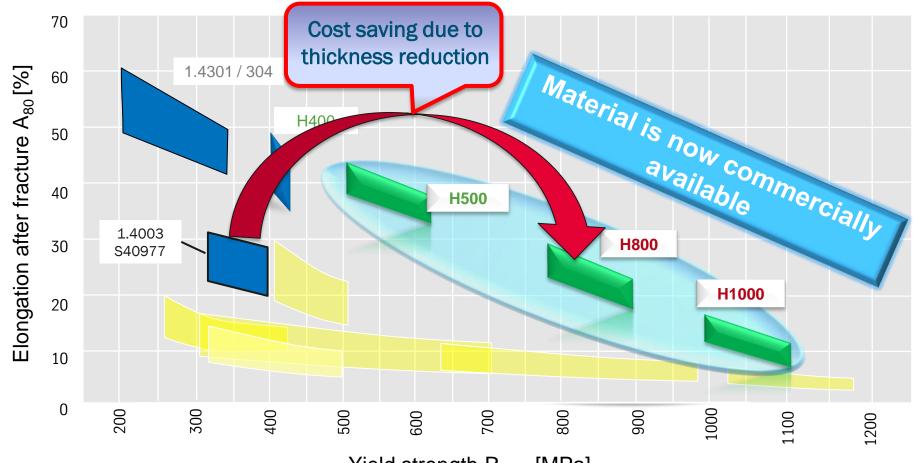


Crash behaviour


Axial crash test with rectangular tube:
Orop height h = 4,00m
Drop mass m = 433kg
Speed v₀ = 30,73km/h


Crash behavior of the B-Pillar comparison between C-steel grade with Rm = 1600 MPa; t=1.7mm and H1000; t=1.1mm

Not optimized in design for austenitic steels

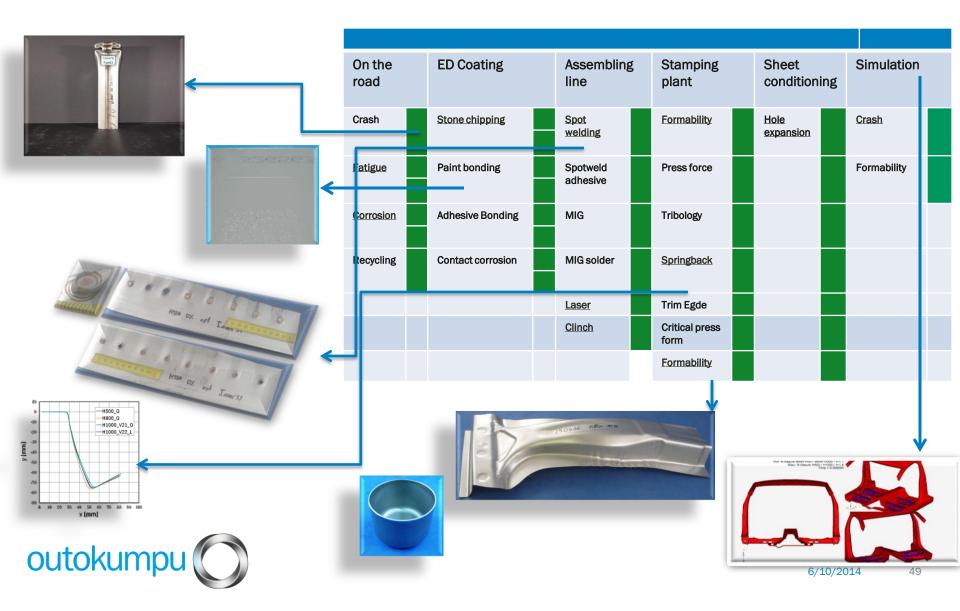

Interpretation of the IIHS schematic view C-steel grade with Rm = 1600 MPa; t=1.7mm and H1000; t=1.1mm – max. Intrusion

Same safety for passengers with reduced thickness

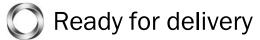
CrMn-Steels - Solution for 3rd Generation AHSS Between 30-50% light weigt potential compared to ferritic grades

Yield strength R_{P0,2} [MPa]

We estimate that more than 300 kg weight reduction is possible by replacing 1.4003 with H800


Ferritic stainless steel 1.4003 / S40977 in rectangular tube construction before painting

Reference: Solaris bus and coach



Excellent processability in press plant, assembly plant and painting shop.

Conclusion

New MnCr steels from Outokumpu Nirosta

Sirst small series in application and OEM enabling processes started

High joinability for a lot of joining procedures and material partners

CrMn steels for more security, more complexibility, higher crash absorption and lightweight potential

Many thanks for Your attention

All statements as to the properties or utilization of the materials and products mentioned in this presentation are for the purpose of description only. Guarantees in respect of the existence of certain properties or utilization of the material mentioned are only valid if agreed upon in writing.

