Spoilt for choice: what grade selection means for fabrication parameters

Alenka Kosmač Euro Inox – European Stainless Steel Association Brussels, Belgium

SSN Seminarium 5th June 2013, Poznan

Scope of the presentation

- About Euro Inox
- Grade selection process when and why
- Heat treatment in fabrication
 - Solution annealing
 - Annealing
 - Quench hardening
 - Stress relieving
- Pickling and passivation

Euro Inox

Members:

- Integrated European producers of stainless steel flat products
- National associations
- Alloying element organisations

Euro Inox

Focus on online communication:

about 140 documents available on the websites <u>www.euro-inox.org</u> and <u>http://mobile.euro-inox.org</u>

Other lines of activity:

- events
- helpdesk
- support of research
- image-building activities

Grade selection process – when and why

- Austenitic
- Ferritic
- Martensitic and precipitation hardening
- Duplex

Grade selection process – when and why

euro

OX

The European Stainless Steel Development Association

Source: International Stainless Steel Forum (ISSF)

Grade selection process – when and why

- Stainless steels exhibit excellent resistance to corrosion due to a passive film or passive layer
- Passive film is affected by any heat treatment

Heat treatment in fabrication

In the delivery condition mostly no need for heat treatment:

- Austenitic : in solution annealed condition for highest corrosion resistance and ductility
- Duplex: in solution annealed condition for highest corrosion resistance and mechanical properties
- Ferritic: in annealed condition
- Martensitic: in annealed codition; hardening to follow

When and why to heat treat?

- Heat treatment often required in fabrication after welding or thermal processing for optimum corrosion resistance, softness and ductility
- Cannot be hardened by heat treatment (but only as a result of cold working)

- Solution annealing in the range of 1040–1150 °C
- Cooling must be rapid (but it must be consistent with distortion limits)
- Avoid 500–900 °C temperature range

Sensitisation

- Risk of chromium carbide precipitation at grain boundaries and reduced corrosion reistance
- Forming of chromium carbide (Cr₂₃C₆)
- High carbon steels

Chromium carbide formation is delayed with lower carbon content

Avoiding sensitisation:

- Solution annealing
- Stabilisation with Ti or Nb
- Reducing the carbon content

 Full solution annealing followed by rapid cooling for restoring mechanical properties and corrosion resistance

Grade	EN Number	UNS Number	Minimum annealing T (°C)
2101	1.4162	S32101	950
2202	1.4062	S32202	980
2304	1.4362	S32304	950
2205	1.4462	S32205	1020
2507	1.4410	S32750	1040

 With the welding the time at temperatue before precipitation of intermetallic phases is being used

Internetallic phases

Sigma, chi phase, alpha prime, carbides, nitrides, Laves

Approximate temperature ranges to avoid

- Sigma phase formation 700–950 °C
- Carbide precipitation 450–800 °C
- 475 °C embrittlement 300–525 °C

Time

Conservative: comparable to the the total time in 650–980 °C range subsequent to the previous full annealing

Additional measures

 Warping and distortions are likely, because soft at annealing temperatures (support!)

Cooling • Water

Testing for absence of detrimental phases as to ASTM A 923

- Metallographic examination
- Charpy impact testing
- Corrosion testing
- Many fabricators have adopted this test as a part of their qualification for welding procedures

No similar EN standard!

ASTM A 923, Method B - Charpy impact testing

- For 2205
- min. 54 J for base metal, HAZ and weld metal

Annealing Ferritic stainless steels

- Supply condition annealed
- Not hardeneded by quenching
- The only heat treatment is annealing
 - Relieved stresses developed during welding or cold working
 - Subcritical annealing (process)
 - Full annealing

Annealing Ferritic stainless steels

The ferritic stainless can be divided into two groups:

- Conventional ferritics, such as types 405, 409, 430 and 446
- Low-interstitial ferritics, such as types 444, superferritics

 Annealing – for more homogenous structure by dissolving transformation products formed during welding.

Post heat treatment of the low-interstitial ferritics is generally unnecessary and is frequently undesired

Annealing Ferritic stainless steels

- 475 °C embrittlement common to the ferritic grades; can be developed from prolonged exposure to, or slow cooling within, the temperature range from about 370–525 °C
 The effects of embrittlement increase rapidly with shremium
- The effects of embrittlement increase rapidly with chromium content

Stress relieving

- Cold worked austenitic stainless ⇒ strain induced martensite
- Stress corrosion cracking (SCC), which relies on tensile stresses as part of the failure mechanism
- Reduced risk of distortion during forming or machining

Stress relieving

- Below 400 °C is acceptable practice, but results in only modest stress relief
- Full solution annealing removes all residual stresses in austenitics, but is not practical
- Stress relieving of duplex is not recommendable
- Stress relieving of martensitics and ferritics weldments will temper weld and HAZ

Pickling and passivation

- After heat treatment surfaces must be metallurgically clean no matter how
 - Mechanical (grinding, polishing, bead blasting)
 - Chemical (pickling, passivating)
 - Mechanical + chemical (electropolishing)

Support available from Euro Inox

euro inox The European Stainless Steel Development Association

Support available from Euro Inox

Euro Inox provides a wide range of advisory publications in up to 14 languages

http://www.euro-inox.org http://mobile.euro-inox.org

